

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

COMBINED SCIENCE

5129/21

Paper 2

October/November 2021

2 hours 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 100.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

This document has 24 pages. Any blank pages are indicated.

DC (CE/CT) 211999/2 © UCLES 2021

[Turn over

BLANK PAGE

Rock salt is a mixture of sodium chloride and sand.							
Sodium chloride is soluble in water. Sand is insoluble in water.							
Complete the following sentences about the separation of the rock salt mixture.							
Water is added to the mixture to the sodium chloride.							
The water is acting as a							
The mixture is to remove the sand.							
The sodium chloride solution that passes through the filter paper is known as							
the							
This solution is evaporated to a smaller volume and cooled so that sodium							
chloride	[5]						

2 The speed–time graph for a car on a theme park ride is shown in Fig. 2.1.

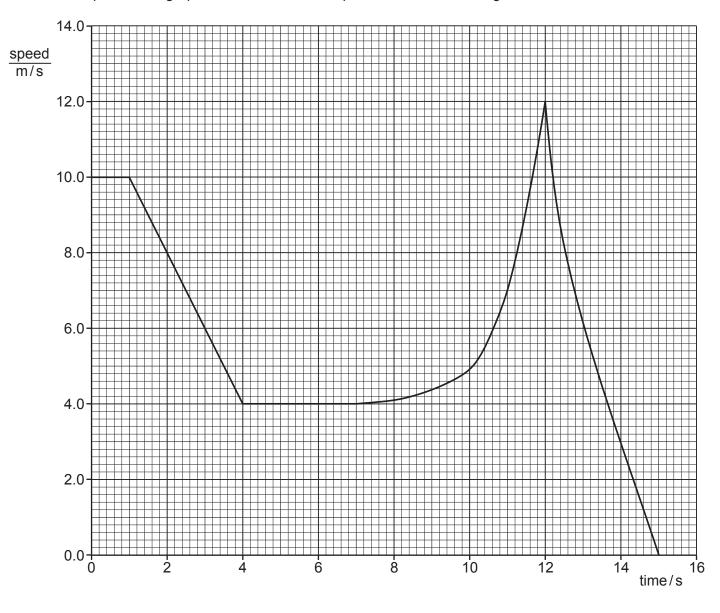


Fig. 2.1

The car has a constant speed of 10 m/s between 0 s and 1.0 s.

(a) Use the data in the graph in Fig. 2.1 to calculate the change in speed between 1.0s and 4.0s.

change in speed = m/s [1]

(b)	Using the data in the graph in Fig. 2.1, describe the motion of the car after 4.0s until it stops.						
	[3]						
	[Total: 4]						

Osmosis and diffusion are both processes by which molecules move.

Compare diffusion with osmosis by stating one similarity and two differences between these two processes.
similarity
difference 1
difference 2

[3]

© UCLES 2021 5129/21/O/N/21

3

4 Sulfur is in Group VI of the Periodic Table.

An atom of sulfur is represented by $^{32}_{16}\mathrm{S}.$

(a) Complete Fig. 4.1 to show the electronic structure of a sulfur atom.

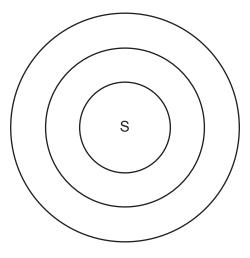


Fig. 4.1

[1]

(b) When sulfur reacts with hydrogen, it forms the compound hydrogen sulfide.

State the type of bonding in hydrogen sulfide.

.....[1]

(c) Hydrogen sulfide burns in oxygen at 300 °C.

The equation for the reaction is shown.

$$2H_2S + 3O_2 \longrightarrow 2SO_2 + 2H_2O$$

The relative molecular mass, M_r , of hydrogen sulfide is 34.

[A_r: S, 32; O, 16; H, 1]

(i) Calculate the relative molecular mass of sulfur dioxide.

......[1]

(ii) Complete the following sentences.

68 g of hydrogen sulfide produces g of sulfur dioxide and g of water.

3.4g of hydrogen sulfide produces g of sulfur dioxide.

[3]

(d) An aqueous solution of hydrogen sulfide turns universal indicator orange.

Suggest the pH of the solution. [1]

[Total: 7]

5 Fig. 5.1 shows a simple pendulum.

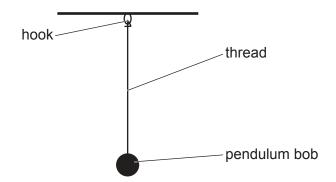


Fig. 5.1

The pendulum bob is free to swing from side to side.

(a)	Describe a procedure to measure accurately the period of the pendulum.					
	[4]					

(b) Some lengths of parts of the pendulum in Fig. 5.1 and some instruments used to measure lengths are shown in Fig. 5.2.

Draw a straight line from each length to the most suitable instrument to use for measuring it.

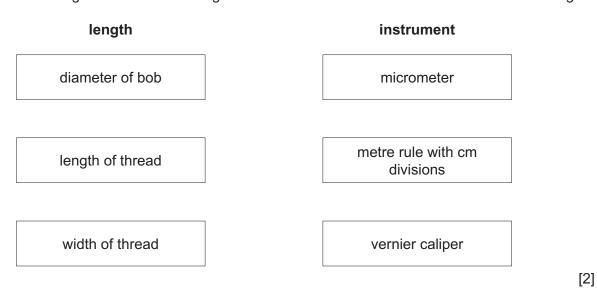


Fig. 5.2

[Total: 6]

The	e eiec	ctronic structure of sodium is 2,8,1.	
The	e elec	ctronic structure of phosphorus is 2,8,5.	
(a)		te how the electronic structures show that sodium and phosphorus are in the same $\mathfrak p$ he Periodic Table.	eriod
(b)		scribe the relationship between the group number and the electronic structure of an	
()			
(c)	Sta	te the general name of the elements in the group to which sodium belongs.	[1]
(d)	(i)	Describe how the character of the elements changes across a period from left to rig	
	(ii)	The oxides of sodium and phosphorus are both soluble in water.	
		State the name of the type of oxide of:	
		sodium oxide	
		phosphorus oxide	[2]
(e)	Pho	osphorus gains three electrons to form a P ³⁻ ion.	
	The	e ion has a noble gas electronic structure.	
	Exp	plain the significance of the noble gas electronic structure.	
			[1]
		ГТо	tal: 7

7 Students investigated the effect of light intensity on the size of leaves.

They studied two species of plant, **C** and **D**.

Leaves from each species were grown in three different light intensities and the surface areas measured.

The results are shown in Fig. 7.1.

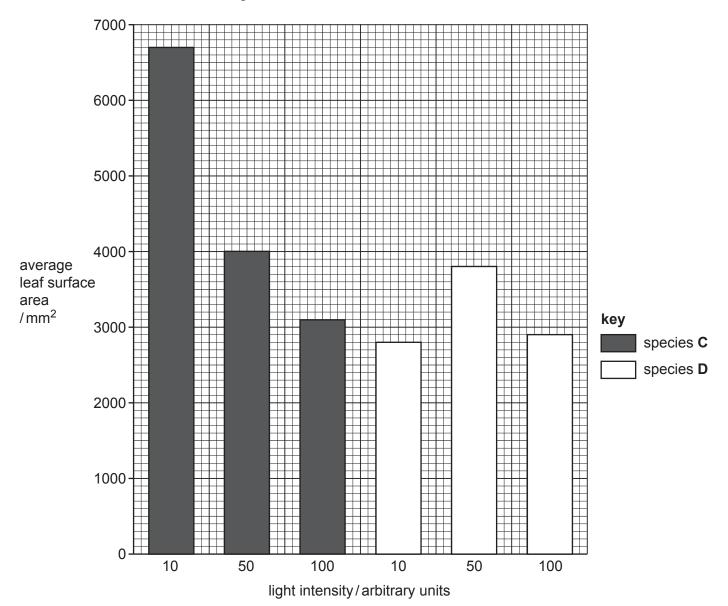


Fig. 7.1

(a)	(i) State the average leaf surface area of a leaf from species C when it is grown in a light intensity of 100 arbitrary units.				
		average leaf surface area = mm ² [1]			
	(ii)	State the light intensity that produced an average leaf surface area of 2800mm^2 in species \textbf{D} .			
		light intensity = arbitrary units [1]			
	(iii)	Describe how light intensity affects the average leaf surface area of leaves in species ${\bf C}$ and in species ${\bf D}$, as shown in Fig. 7.1.			
		species C			
		species D			
		[3]			
(b)		gest why the average leaf surface area of the leaves in species ${\bf C}$ changes as the light nsity changes.			
		[2]			
		[Total: 7]			

8 Fig. 8.1 shows a tower crane.

Fig. 8.1

The crane is used to lift a load. The vertical line through the centre of the tower is the pivot.

A counterweight of 250 000 N is used to balance the load.

(a)	State how the principle of moments applies to this crane.	
	[ź	2
(b)	Calculate the moment of the counterweight when it is 5.0 m from the centre of the tower.	
	moment = Nm [2	2

(c) The crane is used to lift a load of 125 000 N at a distance of 20.0 m from the tower.

The counterweight is moved further away from the tower.

Calculate the distance between the counterweight and the tower that balances the load.

distance = m [2]

[Total: 6]

9 Fig. 9.1 shows the alimentary canal and associated organs.

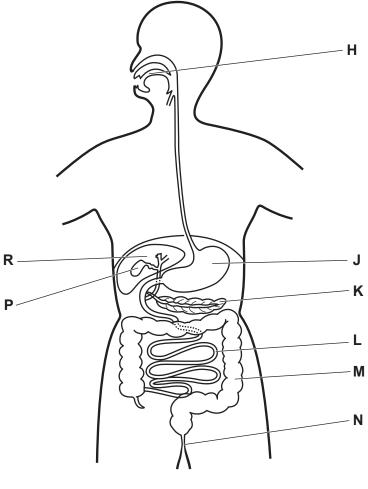


Fig. 9.1

(a) Table 9.1 lists some processes that take place in the digestive system.

Complete Table 9.1 by writing an appropriate letter from Fig. 9.1 to indicate where the process takes place.

Table 9.1

process	letter on Fig. 9.1
absorption	
digestion	
egestion	
ingestion	

[4]

(b) State the name of **one** enzyme which acts on food in the alimentary canal and state the name of the substrate it acts on.

name of enzyme

name of substrate

[2]

[Total: 6]

Oxy	/gen	and nitrogen are components of clean air.	
(a)	Stat	te the approximate percentages of oxygen and nitrogen in clean air.	
	oxy	gen	
	nitro	ogen	[2]
(b)	Stat	te one industrial use of nitrogen.	
(0)	Nlite	agen and evigen reset together in a ser engine to produce evides of nitragen	נין
(c)	INIU	ogen and oxygen react together in a car engine to produce oxides of nitrogen.	
	Stat	te one adverse effect that oxides of nitrogen have on the environment.	
(d)	Lith	ium burns in both oxygen and nitrogen forming lithium oxide, Li ₂ O, and lithium nitride.	ניו
	(i)	Deduce the balanced equation for the reaction between lithium, Li, and oxygen, O_2 .	
			[1]
	(ii)	The lithium ion has the formula Li ⁺ .	
		The nitride ion has the formula, N^{3-} .	
		Deduce the formula of lithium nitride.	
			[1]
		[Total	: 6]

© UCLES 2021 5129/21/O/N/21

10

11 Fig. 11.1 shows a liquid-in-glass thermometer.

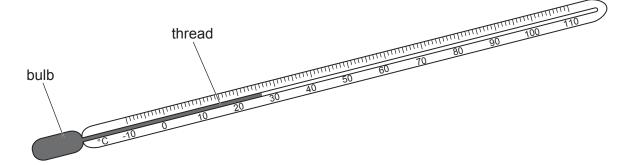


Fig. 11.1

- (a) On Fig. 11.1, draw arrows to show on the scale of the thermometer:
 - the temperature in Celsius at which water freezes. Label this arrow F
 - the temperature in Celsius at which water boils. Label this arrow **B**.

[2]

[Total: 6]

(b) (i) Determine the temperature shown on the thermometer.

	temperature =°	C [1]
(ii)	A student places the thermometer in a beaker of hot water.	
	Explain how the hot water causes the reading on the thermometer to increase.	
		[2]
Sug	gest how the sensitivity of a thermometer can be increased.	
		(ii) A student places the thermometer in a beaker of hot water. Explain how the hot water causes the reading on the thermometer to increase.

12 Table 12.1 contains some processes that occur during respiration.

Place ticks (✓) in Table 12.1 to show if each process:

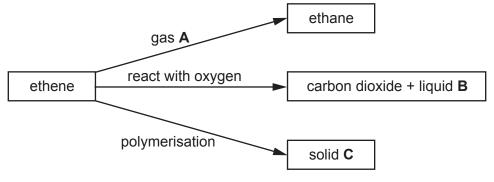

- occurs in aerobic respiration only
- occurs in anaerobic respiration in muscle cells only
- occurs in **both** types of respiration.

Table 12.1

process	occurs only in aerobic respiration	occurs only in anaerobic respiration in muscle cells	occurs in both aerobic respiration and anaerobic respiration in muscle cells	
carbon dioxide is released				
energy is released				
glucose is used				
oxygen is used				
water is produced				

[5]

13 Some reactions of ethene are shown in Fig. 13.1.

			Fig. 13.1	
(a)	lder	ntify:		
	gas	Α		
	liqui	id B		
	solid	d C .		
(b)	(i)	Expla	in why ethene is described as an unsaturated hydrocarbon.	[3]
	(ii)		the reagent used to distinguish between unsaturated hydrocarbons and satural carbons.	
				[1]
(c)	Ene	rgy is	produced when ethane reacts with oxygen.	
	Stat	te the r	name given to reactions that produce energy.	
				[1]
(d)	Dra	w the s	structure of ethane.	

[1]

[Total: 7]

14 A sodium lamp can be used as a source of visible light radiation.

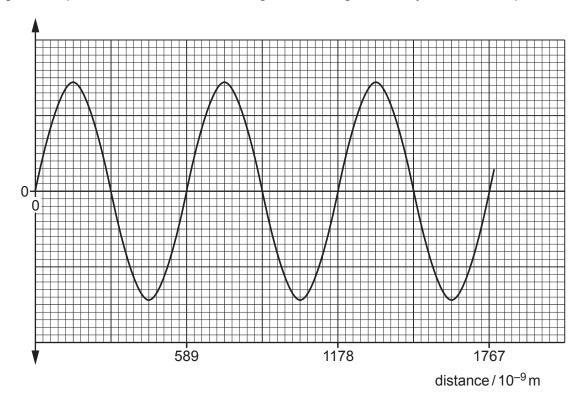


Fig. 14.1

The scale shown for distance on the graph is unusual.

(a) (i) On Fig. 14.1, draw an arrow to show the amplitude of the radiation.

(ii) Use Fig. 14.1 to determine the wavelength of this radiation.

wavelength =
$$\times 10^{-9}$$
 m [1]

(b)	Fig. 1	14.2 shows three	types of r	adiation that	at make up	part of the	electromagnetic	spectrum.
\ · /								

Р	visible light	Q						
order of increasing wavelength								

Fig. 14.2

State the name of the radiations P and Q.

P	
Q	
	[2

(c) The speed of the radiation shown in Fig. 14.1 is $3.0 \times 10^8 \, \text{m/s}$.

Use your answer to (a)(ii) to determine the frequency of this radiation.

Give your answer to 2 significant figures and use standard notation.

frequency = Hz [3]

[Total: 7]

15 Plant structures carry out specific functions.

On Fig. 15.1, draw a straight line from each structure to its function.

structure function transports water anther produces pollen carpel produces seeds root attracts insects xylem absorbs water

Fig. 15.1

16 Some reactions of four metals W, X, Y and Z are listed.

The letters do not represent the symbols of the elements.

W can be extracted from its oxide by heating with metal X.

Y reacts with steam and dilute hydrochloric acid.

Z reacts with dilute hydrochloric acid but not with steam.

Z displaces both X and W from an aqueous solution of their sulfates.

Deduce the order of reactivity of the metals.

most reactive	
east reactive	

[2]

[4]

17 Fig. 17.1 represents an electrical device which changes an input voltage to an output voltage.

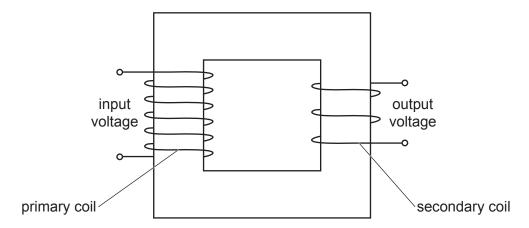


Fig. 17.1

(a)	Identify the device shown in Fig. 17.1.
(b)	There is an alternating current in the primary coil.
	Explain how the device changes the voltage from input to output.
	[3]
	[Total: 4]

18 Fig. 18.1 shows sections through three different types of blood vessels.

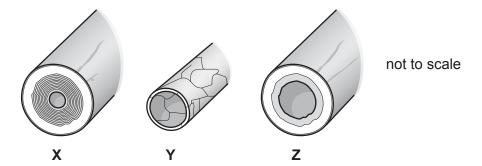


Fig. 18.1

(a)	Name the type of blood vessel represented by Y .	
		 [1]

(b) Draw straight lines from the box on the left to **three** boxes on the right to complete three correct sentences about veins.

... carry blood away from the heart.

... carry blood at high pressure.

... contain valves.

... have thicker walls than arteries.

... have a wider lumen than arteries.

... usually carry deoxygenated blood.

[3]

[Total: 4]

© UCLES 2021 5129/21/O/N/21

Veins ...

19 There are many methods of birth control.

Complete these sentences about birth control.	
A surgical method of birth control in a man is to cut the	
One mechanical method of birth control in a woman is to place aover the cervix.	
A mechanical method of birth control in a man is to place a over the penis.	the
A hormonal method of birth control is when a person takes a	[4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

S
nts
ā
Ε
ѿ
Ш
4
6
ole
ab
<u>.</u> ھ
_
<u>.ပ</u>
ō
റ
Ę
e
4
he
Ľ

	=	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	25	Xe	xenon 131	98	Ru	radon			
	=>			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	85	¥	astatine -			
	5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ро	polonium	116		livermorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	S	tin 119	82	Ъ	lead 207	114	lΉ	flerovium -
	≡			2	М	boron 11	13	Αſ	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> L	thallium 204			
										30	Zu	zinc 65	48	ပ	cadmium 112	80	Hg	mercury 201	112	S	copemicium -
										29	Cn	copper 64	47	Ag	silver 108	79	Αn	gold 197	111	Rg	roentgenium -
Group										28	z	nickel 59	46	Pd	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium -
J.Ö										27	රි	cobalt 59	45	뫈	rhodium 103	77	Г	iridium 192	109	M	meitnerium -
		- エ	hydrogen 1							26	Ьe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium –
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	Та	tantalum 181	105	Op	dubnium –
					atc	rek				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	99	Ba	barium 137	88	Ra	radium —
	_			က	:=	lithium 7	£	Na	sodium 23	19	¥	potassium 39	37	&	rubidium 85	55	S	caesium 133	87	ъ́	francium -

103 Lr lawrencium -
No nobelium
Md mendelevium
100 Fm fermium
99 ES einsteinium
98 Cf califomium
97 Bk berkelium
96 Cm curium
95 Am americium
94 Pu plutonium
93 Np neptunium
92 U uranium 238
Pa protactinium 231
90 Th
89 Ac actinium

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).